Teknologi Pembakaran Pada PLTU Batubara (Bagian 2)


Lanjutan…

PFBC

Pada PFBC, selain dihasilkan panas yang digunakan untuk memanaskan air menjadi uap untuk memutar turbin uap, dihasilkan pula gas hasil pembakaran yang memiliki tekanan tinggi yang dapat memutar turbin gas, sehingga PLTU yang menggunakan PFBC memiliki efisiensi pembangkitan yang lebih baik dibandingkan dengan AFBC karena mekanisme kombinasi (combined cycle) ini. Nilai efisiensi bruto pembangkitan (gross efficiency) dapat mencapai 43%.

 

Sesuai dengan prinsip pembakaran pada FBC, SOx yang dihasilkan pada PFBC dapat ditekan dengan mekanisme desulfurisasi bersamaan dengan pembakaran di dalam boiler, sedangkan NOx dapat ditekan dengan pembakaran pada suhu relatif rendah (sekitar 860℃) dan pembakaran 2 tingkat. Karena gas hasil pembakaran masih dimanfaatkan lagi dengan mengalirkannya ke turbin gas, maka abu pembakaran yang ikut mengalir keluar bersama dengan gas tersebut perlu dihilangkan lebih dulu. Pemakaian CTF (Ceramic Tube Filter) dapat menangkap abu ini secara efektif. Kondisi bertekanan yang menghasilkan pembakaran yang lebih baik ini secara otomatis akan menurunkan kadar emisi CO2 sehingga dapat mengurangi beban lingkungan.

Gambar 9. Prinsip kerja PFBC

(Sumber: Coal Note, 2001)

 

Untuk lebih meningkatkan efisiensi panas, unit gasifikasi sebagian (partial gasifier) yang menggunakan teknologi gasifikasi lapisan mengambang (fluidized bed gasification) kemudian ditambahkan pada unit PFBC. Dengan kombinasi teknologi gasifikasi ini maka upaya peningkatan suhu gas pada pintu masuk (inlet) turbin gas memungkinkan untuk dilakukan.

 

Pada proses gasifikasi di partial gasifier tersebut, konversi karbon yang dicapai adalah sekitar 85%. Nilai ini dapat ditingkatkan menjadi 100% melalui kombinasi dengan pengoksidasi (oxidizer). Pengembangan lebih lanjut dari PFBC ini dinamakan dengan Advanced PFBC (A-PFBC), yang prinsip kerjanya ditampilkan pada gambar 10 di bawah ini. Efisiensi netto pembangkitan (net efficiency) yang dihasilkan pada A-PFBC ini sangat tinggi, dapat mencapai 46%.

Gambar 10. Prinsip kerja A-PFBC

(Sumber: Coal Science Handbook, 2005)

ICFBC

Penampang boiler ICFBC ditampilkan pada gambar 11 di bawah ini.

 

Gambar 11. Penampang boiler ICFBC

(Sumber: Coal Note, 2001)

Seperti terlihat pada gambar, ruang pembakaran utama (primary combustion chamber) dan ruang pengambilan panas (heat recovery chamber) dipisahkan oleh dinding penghalang yang terpasang miring. Kemudian, karena pipa pemanas (heat exchange tube) tidak terpasang langsung pada ruang pembakaran utama, maka tidak ada kekhawatiran terhadap keausan pipa sehingga pasir silika digunakan sebagai pengganti batu kapur untuk media FBC. Batu kapur masih tetap digunakan sebagai bahan pereduksi SOx, hanya jumlahnya ditekan sesuai dengan keperluan saja.

 

Di bagian bawah ruang pembakaran utama terpasang windbox untuk mengalirkan angin ke boiler, dimana angin bervolume kecil dialirkan melalui bagian tengah untuk menciptakan lapisan bergerak (moving bed) yang lemah, dan angin bervolume besar dialirkan melewati kedua sisi windbox tersebut untuk menimbulkan lapisan bergerak yang kuat. Dengan demikian maka pada bagian tengah ruang pembakaran utama akan terbentuk lapisan bergerak yang turun secara perlahan, sedangkan pada kedua sisi ruang tersebut, media FBC akan terangkat kuat ke atas menuju ke bagian tengah ruang pembakaran utama dan kemudian turun perlahan – lahan, dan kemudian terangkat lagi oleh angin bervolume besar dari windbox. Proses ini akan menciptakan aliran berbentuk spiral (spiral flow) yang terjadi secara kontinyu pada ruang pembakaran utama. Mekanisme aliran spiral dari media FBC ini dapat menjaga suhu lapisan mengambang supaya seragam. Selain itu, karena aliran tersebut bergerak dengan sangat dinamis, maka pembuangan material yang tidak terbakar juga lebih mudah.

 

Kemudian, ketika media FBC yang terangkat kuat tersebut sampai di bagian atas dinding penghalang, sebagian akan berbalik menuju ke ruang pengambilan panas. Karena pada ruang pengambilan panas tersebut juga dialirkan angin dari bagian bawah, maka pada ruang tersebut akan terbentuk lapisan bergerak yang turun perlahan juga. Akibatnya, media FBC akan mengalir dari ruang pembakaran utama menuju ke ruang pengambilan panas kemudian kembali lagi ke ruang pembakaran utama, membentuk aliran sirkulasi (circulating flow) di antara kedua ruang tersebut. Menggunakan pipa pemanas yang terpasang pada ruang pengambilan panas, panas dari ruang pembakaran utama diambil melalui mekanisme aliran sirkulasi tadi.

 

Secara umum, perubahan volume angin yang dialirkan ke ruang pengambilan panas berbanding lurus dengan koefisien hantar panas secara keseluruhan. Dengan demikian maka hanya dengan mengatur volume angin tersebut, tingkat keterambilan panas serta suhu pada lapisan mengambang dapat dikontrol dengan baik, sehingga pengaturan beban dapat dilakukan dengan mudah pula.

 

Untuk lebih meningkatkan kinerja pembangkitan, proses pada ICFBC kemudian diberi tekanan dengan cara memasukkan unit ICFBC ke dalam wadah bertekanan (pressurized vessel), yang selanjutnya disebut dengan Pressurized ICFBC (PICFBC). Dengan mekanisme ini maka selain uap air, akan dihasilkan pula gas hasil pembakaran bertekanan tinggi yang dapat digunakan untuk memutar turbin gas sehingga pembangkitan secara kombinasi (combined cycle) dapat diwujudkan.

 

Pembangkitan Kombinasi Dengan Gasifikasi Batubara

Peningkatan efisiensi pembangkitan dengan mekanisme kombinasi melalui pemanfaatan gas sintetis hasil proses gasifikasi seperti pada A-PFBC, selanjutnya mengarahkan teknologi pembangkitan untuk lebih mengintensifkan penggunaan teknologi gasifikasi batubara ke dalam sistem pembangkitan. Upaya ini akhirnya menghasilkan sistem pembangkitan yang disebut dengan Integrated Coal Gasification Combined Cycle (IGCC).

 

Karena tulisan ini hanya membahas perkembangan teknologi pembangkitan listrik, maka penjelasan tentang bagaimana proses gasifikasi batubara berlangsung tidak akan diterangkan disini.

 

IGCC

Garis besar diagram alir pembangkit listrik sistem IGCC ditampilkan pada gambar 12 di bawah ini.

 

Gambar 12. Tipikal IGCC

(Sumber: Clean Coal Technologies in Japan, 2005)

 

Seperti terlihat pada gambar, pada sistem ini terdapat alat gasifikasi (gasifier) yang digunakan untuk menghasilkan gas, umumnya bertipe entrained flow. Yang tersedia di pasaran saat ini untuk tipe tersebut misalnya Chevron Texaco (lisensinya sekarang dimiliki GE Energy), E-Gas (lisensinya dulu dimiliki Dow, kemudian Destec, dan terakhir Conoco Phillips ), dan Shell. Prinsip kerja ketiga alat tersebut adalah sama, yaitu batubara dan oksigen berkadar tinggi dimasukkan kedalamnya kemudian dilakukan reaksi berupa oksidasi sebagian (partial oxidation) untuk menghasilkan gas sintetis (syngas), yang 85% lebih komposisinya terdiri dari H2 dan CO. Karena reaksi berlangsung pada suhu tinggi, abu pada batubara akan melebur dan membentuk slag dalam kondisi meleleh (glassy slag). Adapun panas yang ditimbulkan oleh proses gasifikasi dapat digunakan untuk menghasilkan uap bertekanan tinggi, yang selanjutnya dialirkan ke turbin uap.

 

Oksigen yang digunakan untuk proses gasifikasi dihasilkan dari fasilitas Air Separation Unit (ASU). Unit ini berfungsi untuk memisahkan oksigen dari udara melalui mekanisme cryogenic separation, menghasilkan oksigen berkadar sekitar 95%. Selain oksigen, pada ASU juga dihasilkan nitrogen yang digunakan sebagai media inert untuk feeding batubara ke gasifier, selain dapat pula digunakan untuk menurunkan suhu pada combustor sehingga emisi NOx dapat terkontrol.

 

Pada gas sintetis, selain H2 dan CO juga dihasilkan unsur lain yang tidak ramah lingkungan seperti HCN, H2S, NH3, COS, uap air raksa, dan char. Oleh karena itu, gas harus diproses terlebih dulu untuk menghilangkan bagian tersebut sebelum dikirim ke turbin gas. Gas buang dari turbin gas kemudian mengalir ke Heat Recovery Steam Generator (HRSG) yang berfungsi mengubah panas dari gas tersebut menjadi uap air, yang selanjutnya dialirkan menuju turbin uap. Dengan mekanisme seperti ini, efisiensi netto pembangkitan yang dihasilkan juga jauh melebihi pembangkitan pada sistem biasa (PCC) yang saat ini mendominasi. Selain efisiensi pembangkitan, kelebihan lain IGCC adalah sangat rendahnya kadar emisi polutan yang dihasilkan, fleksibilitas bahan bakar yang dapat digunakan, penggunaan air yang 30-40% lebih rendah dibanding PLTU konvensional (PCC), tingkat penangkapan CO2 yang signifikan, slag yang dapat dimanfaatkan untuk material pekerjaan konstruksi, dan lain – lain.

 

Sebagai contoh adalah Nuon IGCC yang terletak di Buggenum, Belanda, berkapasitas 250MW. Pembangkit ini menghasilkan efisiensi netto sebesar 43% (Low Heating Value), dengan performansi baku mutu lingkungan yang sangat bagus. Emisi NOx yang dihasilkan sangat rendah yaitu kurang dari 10 ppm, kemudian efisiensi pembuangan sulfur di atas 99%, tingkat emisi flyash, senyawa klorida dan logam berat mudah menguap yang bisa dibilang nol, serta air limbah yang bisa diresirkulasi kembali sehingga tidak ada buangan air limbah ke lingkungan.

 

Di samping kelebihan tersebut, terdapat pula kelemahan pada sistem IGCC yang dikembangkan saat ini, misalnya, besarnya kapasitas pembangkitan yang ditentukan berdasarkan banyaknya unit dan model turbin gas yang akan digunakan. Contohnya untuk turbin gas GE Frame 7FA yang berkapasitas 275MW. Apabila IGCC akan dioperasikan dengan kapasitas pembangkitan 275MW, berarti cukup 1 unit yang dipasang. Bila 2 unit yang akan digunakan, berarti kapasitas pembangkitan menjadi 550MW, dan bila 3 unit maka akan menjadi 825MW. Kemudian bila kapasitas pembangkitan yang diinginkan adalah di bawah 200MW, maka model yang dipakai bukan lagi GE Frame 7FA, tapi GE 7FA yang berkapasitas 197MW. Demikian pula bila menghendaki kapasitas pembangkitan yang lebih kecil lagi, maka GE 6FA yang berkapasitas 85MW dapat digunakan.

 

Dengan kombinasi antara model dan banyaknya unit turbin gas yang akan digunakan ini, selain akan membatasi kapasitas pembangkitan pada IGCC, sebenarnya juga akan mempersempit rentang operasi. Misalnya ketika akan menurunkan beban pada saat operasi puncak, hal itu mesti dilakukan dengan menurunkan beban pada turbin gas. Penurunan beban turbin gas ini otomatis akan menurunkan efisiensi pembangkitan dan akibat yang kurang baik pada emisi polutan yang dihasilkan. Kelemahan lain yang perlu dicermati dari sistem IGCC saat ini adalah ongkos pembangkitan per kW dan operation & maintenance (O & M) yang lebih mahal, serta availability factor (AF) yang lebih rendah dibanding PCC.

 

Sejarah IGCC dimulai pada tahun 1970 ketika perusahaan STEAG dari Jerman Barat mengembangan IGCC berkapasitas 170MW. Jauh setelahnya, proyek demonstration plant IGCC bernama Cool Water diluncurkan di AS pada tahun 1984, yang mengoperasikan IGCC berkapasitas 120MW sampai dengan tahun 1989. Sampai tulisan ini dibuat, sebenarnya belum ada unit IGCC yang murni komersial. Penyebab utamanya adalah investasi pembangunannya yang besar, serta teknologi IGCC yang belum terbukti. Teknologi IGCC disini maksudnya adalah rangkaian proses dari keseluruhan bangunan (building block) yang membentuk sistem IGCC utuh. Hal ini perlu ditekankan karena teknologi dari masing – masing unit pada IGCC misalnya gasifier, HRSG, turbin gas, turbin uap, dan yang lainnya merupakan teknologi yang sudah terbukti. Selama perkembangan yang berlangsung sekitar 20 tahun lebih sejak proyek Cool Water, unit IGCC yang beroperasi secara komersial saat ini baik di AS maupun di Eropa pada awalnya berstatus demonstration plant. Contoh beberapa plant IGCC tersebut adalah

 

1. Tampa Electric Polk 250MW IGCC Power Station, terletak di Florida, AS. IGCC ini beroperasi sejak September 1996 dibawah proyek Tampa, menggunakan gasifier dari Chevron Texaco (sekarang GE Energy). Bahan bakar yang digunakan adalah batubara dan petroleum coke (petcoke). Masalah yang dihadapi adalah lebih rendahnya tingkat konversi karbon dibandingkan dengan nilai yang direncanakan. Pernah pula terjadi fauling pada gas cooler.

 

2. Wabash River 260MW IGCC Power Station, terletak di Indiana, AS. Beroperasi sejak September 1995 dibawah proyek Wabash River, pembangkit ini menggunakan teknologi gasifikasi dari Global Energy (saat ini bagian dari Conoco Phillips). Sejak berakhirnya proyek dari Departemen Energi AS (DOE) pada tahun 2001, bahan bakar yang digunakan adalah petcoke 100%.

3. Nuon 250MW IGCC Power Station, terletak di Buggenum, Belanda. IGCC ini bermula dari proyek Demkolec yang dimulai pada bulan Januari 1994. Teknologi yang digunakan adalah dari Shell, yang bahan bakarnya adalah batubara dicampur dengan biomassa (sludge dan sampah kayu) untuk lebih mengurangi emisi CO2. Masalah yang pernah terjadi adalah kebocoran pipa gas cooler dan timbulnya fauling pada gas cooler ketika campuran sludge sekitar 4-5%.

 

Gambar 13. Nuon IGCC, Buggenum

(Sumber: Thomas Chhoa, Shell Gas & Power, 2005)

4. Elcogas 300MW IGCC Power Station, terletak di Puertollano, Spanyol.  Pembangkit IGCC ini beroperasi sejak Juni 1996 dibawah proyek Puertollano, menggunakan teknologi gasifikasi dari Prenflow (saat ini bagian dari Shell). Bahan bakarnya berupa campuran petcoke dan batubara berkadar abu 40% dengan perbandingan 50:50. Di bawah program dari Uni Eropa, plant ini direncanakan sebagai tempat untuk proyek pengambilan CO2 (CO2 recovery) dan produksi H2.

 

Dengan mempertimbangkan berbagai faktor diantaranya efisiensi pembangkitan yang tinggi, faktor ramah lingkungan, dan teknologi gasifikasi yang sudah terbukti, upaya untuk lebih mengurangi kelemahan IGCC sudah mulai dilakukan.

 

Selain dari segi biaya, dilakukan pula upaya untuk lebih meningkatkan efisiensi pembangkitan, yaitu dengan menambahkan sel bahan bakar (fuel cell) ke dalam sistem IGCC. Dengan demikian, akan terdapat 3 jenis kombinasi pembangkitan pada sistem yang baru ini yaitu turbin gas, turbin uap, dan fuel cell. Metode pembangkitan ini disebut dengan Integrated Coal Gasification Fuel Cell Combined Cycle (IGFC), yang diagram alirnya ditampilkan pada gambar 16 di bawah ini.

 

Gambar 14. Tipikal IGFC

(Sumber: Clean Coal Technologies in Japan, 2005)

 

Pada sel bahan bakar, pembangkitan listrik dilakukan secara langsung melalui reaksi elektrokimia antara hidrogen dan oksigen sehingga tingkat kerugian energinya sedikit dan efisiensi pembangkitannya tinggi. Hidrogen tersebut dapat berasal dari gas alam, gas bio, atau gas hasil gasifikasi batubara. Berdasarkan material yang digunakan untuk elektrolitnya, sel bahan bakar terbagi 4 yaitu Phosphoric-Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC), Solid-Oxide Fuel Cell (SOFC), dan Proton-Exchange Membrane Fuel Cell (PEFC). Di bawah ini ditampilkan karakteristik dari keempat jenis sel bahan bakar tersebut.

 

Tabel 1. Karakteristik Sel Bahan Bakar

(Sumber: Clean Coal Technologies in Japan, 2005)

Dari tabel di atas terlihat bahwa sel bahan bakar yang sesuai untuk kombinasi pembangkitan dengan turbin gas adalah SOFC, karena reaksinya menghasilkan suhu yang sangat tinggi.

 

Dibandingkan dengan PCC, pembangkitan dengan metode IGFC ini secara teoretis mampu mengurangi emisi CO2 sebesar 30%. Kelebihan lainnya adalah tingginya efisiensi pembangkitan yang dapat dicapai yaitu minimal 55%. Disamping kelebihan tersebut, terdapat beberapa hal yang perlu diperhatikan sebelum IGFC benar – benar dapat diaplikasikan secara komersial. Yang pertama adalah urgensi pematangan teknologi IGCC, karena IGFC pada dasarnya adalah pengembangan dari IGCC. Kemudian, perlunya pengembangan sel bahan bakar yang berefisiensi tinggi tapi murah, untuk mendukung biaya pembangkitan yang kompetitif ke depannya.

 

Penutup

Perkembangan teknologi pembakaran pada PLTU batubara telah disajikan di atas. Secara umum dapat dikatakan bahwa suatu teknologi yang berkembang tidak terlepas dari hal pokok yang disebut 3E, yaitu Engineering (sisi teknis), Economy (sisi ekonomis), dan Environment (sisi lingkungan). Pada tahap awal, faktor Economy mungkin menjadi pertimbangan utama untuk pembangunan fasilitas pembangkitan, diikuti Engineering, dan terakhir Environment. Namun seiring dengan upaya pengurangan polusi atau pencemaran lingkungan yang menyebabkan makin ketatnya baku mutu lingkungan, terlihat bahwa urutan 3E tersebut mulai berubah. Faktor Environment secara perlahan menempati urutan pertama dalam pertimbangan pengembangan teknologi, kemudian Engineering, dan terakhir justru Economy.

 

Mengambil contoh IGCC, adalah wajar bila tahap awal perkembangannya pasti memerlukan biaya yang besar. Namun seiring dengan menguatnya isu lingkungan dan matangnya teknologi tersebut, biaya itu akan menurun dan pada waktu tertentu akan kompetitif terhadap teknologi yang sudah ada. Sebaliknya, teknologi pembangkitan yang ada, misalnya PCC yang saat ini mendominasi, lambat laun akan semakin mahal untuk mengakomodasi standar mutu lingkungan yang semakin ketat, dan pada akhirnya justru malah akan membebani dari segi ekonomi. Di bawah ini ditampilkan perbandingan biaya pembangkitan antara IGCC dan PCC di AS selama kurun 20 tahun terakhir, dan prediksinya di masa depan.

 

Gambar 15. Perbandingan Biaya Pembangkitan per kW IGCC dan PCC di AS

(Sumber: JCOAL Journal, vol.3, Jan. 2006)

Dari grafik di atas terlihat bahwa selama 20 tahun terakhir, biaya pembangkitan untuk PCC meningkat sekitar 50%. Peningkatan tersebut diakibatkan oleh penambahan peralatan untuk mengurangi beban lingkungan, misalnya fasilitas desulfurisasi (FGD). Sebaliknya, biaya pembangkitan per kW pada IGCC justru semakin menurun, dan diharapkan pada tahun 2010, nilainya akan sama dengan pada PCC, yaitu sekitar $1200.

 

Referensi

1. Amick, Phil, Coal Gasification Flexibility for Fuels & Products, ConocoPhillips, 2005

2. Baardson, John A., Coal to Liquids: Shell Coal Gasification with Fischer-Tropsch Synthesis, Baardson Energy LLC, 2003.

3. Chhoa, Thomas, Shell Gasification Business in Action, Shell Gas & Power, 2005.

4. JCOAL, Coal Science Handbook, Japan Coal Energy Center, 2005.

5. JCOAL, JCOAL Journal Vol. 2, Nov. 2005, Japan Coal Energy Center, 2005.

6. JCOAL, JCOAL Journal Vol. 3, Jan. 2006, Japan Coal Energy Center, 2006.

7. JCOAL, JCOAL Journal Vol. 4, Mar. 2006, Japan Coal Energy Center, 2006.

8. Material Presentasi, Idemitsu Kosan Co., Ltd, 2003.

9. Sekitan no Kiso Chishiki, Sekitan Shigen Kaihatsu Kabushiki Kaisha.

10. Shigen Enerugi- Chou Shigen Nenryou Bu, Ko-ru No-to 2001 Nen Ban, Shigen Sangyou Shinbunsha, 2001.

11. Sema, Tohru, Karyoku Hatsuden Souron, Denki Gakkai, 2002.

12. WCI, The Coal Resource, World Coal Institute, 2004.

Sumber: http://imambudiraharjo.wordpress.com

  1. Leave a comment

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: